Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms
نویسندگان
چکیده
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.
منابع مشابه
Passive Vibration Control for Fatigue Damage Mitigation in Steel Jacket Platforms
Considering the stress cycles in the joints and members due to wave induced forces on offshore platforms, fatigue analysis is therefore one of the most important analyses in the offshore platforms design. Although most of the steel jacket type platforms are designed and located in areas with relatively high ratios of operational sea-states, for maximum environmental events, would have acceptabl...
متن کاملVibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model
This study presents a modified continuum model to investigate the vibration behavior of single and multi-carbon nanotubes (CNTs). Two parameters are exploited to consider size dependence; one derived from the energy equivalent model and the other from the modified couple stress theory. The energy equivalent model, derived from the basis of molecular mechanics, is exploited to describe size-depe...
متن کاملAnalysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices
This paper presents the analysis and preliminary design, fabrication, and measurement for mechanical vibration-isolation platforms especially designed for resonating MEMS devices including gyroscopes. Important parameters for designing isolation platforms are specified and the first platform (in designs with cascaded multiple platforms) is crucial for improving vibration-isolation performance a...
متن کاملNanoscale Motion Control With a Compact Minimum-Actuator Magnetic Levitator
This paper presents a novel magnetically levitated (maglev) stage developed to meet the ever-increasing precise positioning requirements in nanotechnology. This magnetic levitator has 6 independent linear actuators necessary and sufficient to generate all 6-degree-of-freedom (6-DOF) motions. This minimum-actuator design concept led to a compact, 200 g lightweight moving part and the power consu...
متن کاملVibration Testing of a Steel Girder Bridge using Cabled and Wireless Sensors
Being able to significantly reduce system installation time and cost, wireless sensing technology has attracted much interest in the structural health monitoring (SHM) community. This paper reports the field application of a wireless sensing system on a 4-span highway bridge located in Wayne, New Jersey in the US. Bridge vibration due to traffic and ambient excitation is measured. To enhance th...
متن کامل